Functional and mutational landscapes of BRCA1 for homology-directed repair and therapy resistance
نویسندگان
چکیده
BRCA1 plays a critical role in homology-directed repair (HDR) of DNA double strand breaks, and the repair defect of BRCA1-mutant cancer cells is being targeted with platinum drugs and poly (ADP-ribose) polymerase (PARP) inhibitors. We have employed relatively simple and sensitive assays to determine the function of BRCA1 variants or mutants in two HDR mechanisms, homologous recombination (HR) and single strand annealing (SSA), and in conferring resistance to cisplatin and olaparib in human cancer cells. Our results define the functionality of the top 22 patient-derived BRCA1 missense variants and the contribution of different domains of BRCA1 and its E3 ubiquitin ligase activity to HDR and drug resistance. Importantly, our results also demonstrate that the BRCA1-PALB2 interaction dictates the choice between HR and SSA. These studies establish functional and mutational landscapes of BRCA1 for HDR and therapy resistance, while revealing novel insights into BRCA1 regulatory mechanisms and HDR pathway choice.
منابع مشابه
Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation.
Chromosomal breaks occur spontaneously as a result of normal DNA metabolism and after exposure to DNA-damaging agents. A major pathway involved in chromosomal double-strand break repair is homologous recombination. In this pathway, a DNA sequence with similarity to a damaged chromosome directs the repair of the damage. The protein products of the hereditary breast cancer susceptibility genes, B...
متن کاملIdentification of BRCA1 As a Potential Biomarker for Insulin-Like Growth Factor-1 Receptor Targeted Therapy in Breast Cancer
The insulin-like growth factor-1 receptor (IGF1R) emerged in recent years as a promising therapeutic target in oncology. Identification of potential biomarkers capable of predicting response to IGF1R-targeted therapy is of cardinal importance. Tumor suppressor BRCA1 has important roles in multiple pathways, including gene transcription, DNA damage repair, and control of apoptosis. Early studies...
متن کاملEZN-2208 (PEG-SN38) Overcomes ABCG2-Mediated Topotecan Resistance in BRCA1-Deficient Mouse Mammary Tumors
BRCA1 dysfunction in hereditary breast cancer causes defective homology-directed DNA repair and sensitivity towards DNA damaging agents like the clinically used topoisomerase I inhibitors topotecan and irinotecan. Using our conditional K14cre;Brca1(F/F);p53(F/F) mouse model, we showed previously that BRCA1;p53-deficient mammary tumors initially respond to topotecan, but frequently acquire resis...
متن کاملA mutational signature in gastric cancer suggests therapeutic strategies
Targeting defects in the DNA repair machinery of neoplastic cells, for example, those due to inactivating BRCA1 and/or BRCA2 mutations, has been used for developing new therapies in certain types of breast, ovarian and pancreatic cancers. Recently, a mutational signature was associated with failure of double-strand DNA break repair by homologous recombination based on its high mutational burden...
متن کاملSensitivity and acquired resistance of BRCA1;p53-deficient mouse mammary tumors to the topoisomerase I inhibitor topotecan.
There is no tailored therapy yet for human basal-like mammary carcinomas. However, BRCA1 dysfunction is frequently present in these malignancies, compromising homology-directed DNA repair. This defect may serve as the tumor's Achilles heel and make the tumor hypersensitive to DNA breaks. We have evaluated this putative synthetic lethality in a genetically engineered mouse model for BRCA1-associ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017